The Euler totient function on Lucas sequences

نویسندگان

چکیده

In 2009, Luca and Nicolae [[Formula: see text], Integers 9 (2009) A30] proved that the only Fibonacci numbers whose Euler totient function is another number are [Formula: text]. 2015, Faye [Pell a Pell number, Publ. Inst. Math. 101(115) (2017) 231–245] text] Here, we add to these two results prove for any fixed natural if define sequence as all then solution Diophantine equation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Lucas sequences

We introduce the notions of unsigned and signed generalized Lucas sequences and prove certain polynomial recurrence relations on their characteristic polynomials. We also characterize when these characteristic polynomials are irreducible polynomials over a finite field. Moreover, we obtain the explicit expressions of the remainders of Dickson polynomials of the first kind divided by the charact...

متن کامل

On Lucas Sequences Computation

This paper introduces an improvement to a currently published algorithm to compute both Lucas “sister” sequences Vk and Uk. The proposed algorithm uses Lucas sequence properties to improve the running time by about 20% over the algorithm published in [1].

متن کامل

On the image of Euler’s totient function

Euler's totient function φ is the function defined on the positive natural numbers N * in the following way: if n ∈ N * , then φ(n) is the cardinal of the set {x ∈ N * : 1 ≤ x ≤ n, (x, n) = 1}, where (x, n) is the pgcd of x and n. Thus φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, and so on. The principle aim of this article is to study certain aspects of the image of the function φ. 1 Elementary pro...

متن کامل

On squares in Lucas sequences

Let P and Q be non-zero integers. The Lucas sequence {Un(P,Q)} is defined by U0 = 0, U1 = 1, Un = PUn−1 − QUn−2 (n ≥ 2). The question of when Un(P,Q) can be a perfect square has generated interest in the literature. We show that for n = 2, ..., 7, Un is a square for infinitely many pairs (P,Q) with gcd(P,Q) = 1; further, for n = 8, ..., 12, the only non-degenerate sequences where gcd(P,Q) = 1 a...

متن کامل

On the prime density of Lucas sequences

The density of primes dividing at least one term of the Lucas sequence defined by L0(P) = 2, L1(P)= P and Ln(P) = PLn-1(P) + Ln-2(P) for n ~ 2, with P an arbitrary integer, is determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2022

ISSN: ['1793-7310', '1793-0421']

DOI: https://doi.org/10.1142/s1793042123500148